Подобные работы

Статистические величины

echo "Средняя величина всегда именованная, имеет ту же размерность (единицу измерения), что и признак у отдельных единиц совокупности. Основным условием научного использования средней величины являет

Экстремумы функций многих переменных

echo "Необходимый признак экстремума : Если в точке "; echo ''; echo " дифференцируемая функция "; echo ''; echo " имеет экстремум, то ее частные производные в этой точке равны нулю : "; echo ''; echo

Статистика

echo "Процесс воспроизводства общественного продукта изучается экономической статистикой. Процесс воспроизводства населениядемографической статистикой. Процесс воспроизводства материального и культу

Структура исчисления предикатов построение логического вывода

echo "Потребность в общих именах при употреблений ЯЛП сохранится лишь для описания областей возможных значений этих переменных, что относится уже не к самому языку, а к метаязыку. Нужны также знаки св

Теория информации

echo "Понятие энтропии. 2) Понятие информации. 3) Решение некоторых типовых задач. 4) Заключение 5) Список использованной литературы. "; echo ''; echo " Главным свойством случайных событий является от

Шпаргалки по высшей математике (1 курс)

echo "Совокупность всех числовых значений переменой величины наз областью изменения этой переменной. Окрестность х0 наз производный интервал (a;b) содержащий эту . If каждому значению переменной х э

Теория статистики

echo "Составными элементами сводки являются: 1) программа сводки; 2) подсчет групповых итогов; 3) оформление конечных результатов сводки в виде таблиц и графиков. Программа статистической сводки соде

Дисперсионный анализ

echo "Введение…………………….……………………………………………....3 1 Дисперсионный анализ………………………………………………....4 1.1 Основные понятия дисперсионного анализа…………………..……4 1.2 Однофакторный дисперсионный анализ…………………………....

Квадратные уравнения

Квадратные уравнения

Определение.

Неполные кв. уравнения.

Полное кв. уравнение.

Теорема Виета.

Теорема, обратная теореме Виета. Кв. уравнения с комплексными переменными.

Решение кв. уравнений с помощью графиков.

Разложение кв. трехчлена на множители.

Применение кв. уравнений.

Практикум.

Заключение. Кв. уравнения в Древнем Вавилоне.

Главное меню n Необходимость решать уравнения не только первой, но и второй степени ёщё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики.

Квадратные уравнения умели решать около 2000 лет до нашей веры вавилоняне.

Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения: n Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводя только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

Несмотря на высокий уровень развития алгебры в Вавилонии , в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений. Кв. уравнения в Индии.

Главное меню n Задачи на квадратные уравнения встречаются уже в 499 г. n В Древней Индии были распространены публичные соревнования в решении трудных задач. n В одной из старинных индийских книг говорится по поводу таких соревнований следующее: 'Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи. n Задача знаменитого индийского математика Бхаскары : n Обезьянок резвых стая Всласть поевши, развлекаясь. Их в квадрате часть восьмая На поляне забавлялась. А 12 по лианам..... Стали прыгать, повисая.

Государственное регулирование, Таможня, Налоги

Математика

Право

Гражданское право

Гражданское процессуальное право

Литература, Лингвистика

Искусство, Культура, Литература

Биология

География, Экономическая география

Экономическая теория, политэкономия, макроэкономика

Социология

Военное дело

Психология, Общение, Человек

Педагогика

Уголовное право

Микроэкономика, экономика предприятия, предпринимательство

Радиоэлектроника

Политология, Политистория

История отечественного государства и права

Маркетинг, товароведение, реклама

Пищевые продукты

История экономических учений

Охрана природы, Экология, Природопользование

Медицина

Здоровье

История государства и права зарубежных стран

Физика

Программирование, Базы данных

Философия

Теория систем управления

Сельское хозяйство

Ценные бумаги

Трудовое право

Культурология

Техника

Музыка

Криминалистика и криминология

Материаловедение

Историческая личность

Гражданская оборона

Международное право

Технология

Правоохранительные органы

Земельное право

Теория государства и права

Религия

Экономика и Финансы

История политических и правовых учений

Жилищное право

Астрономия

Финансовое право

Экскурсии и туризм

История

Искусство

Экономико-математическое моделирование

Бухгалтерский учет

Российское предпринимательское право

Химия

Банковское дело и кредитование

Металлургия

Иностранные языки

Менеджмент (Теория управления и организации)

Страховое право

Конституционное (государственное) право зарубежных стран

Программное обеспечение

Транспорт

Адвокатура

Нероссийское законодательство

Физкультура и Спорт

Геология

Международные экономические и валютно-кредитные отношения

Физкультура и Спорт, Здоровье

Административное право

Налоговое право

Космонавтика

Промышленность и Производство

Компьютеры, Программирование

Архитектура

Конституционное (государственное) право России

Компьютеры и периферийные устройства

Компьютерные сети

Уголовное и уголовно-исполнительное право

Муниципальное право России

Военная кафедра